
New Factorization Techniques and Parallel O(Log N) Algorithms for Forward

Dynamics Solution of Single Closed-Chain Robot Manipulators

Amir Fijany

Jet Propulsion Laboratory, California Institute of Technology

Pasadena, CA 91109

Abstract- ing this paper parallel O(Log N) algorithms for dynamic simulation of

single closed-chain rigid multibody system as specialized to the case of a

robot manipulator in contact with the environment are developed. A new

factorization technique is proposed for computation of the inverse of the mass

matrix (At-l) and the inverse of the Operational Space Mass Matrix (A-l). This

results in new factorization for both M-i and A-i in form of Schur Complement

with simple physical interpretations. A new O(N) algorithm for the problem is

then derived by a recursive implementation of these factorization, It is shown

that this O(N) algorithm is strict~y paralJeJ, that is, it is less efficient

than other O(N) algorithms for serial computation of problem. But, to our

knowledge, it is the only known algorithm that can be parallelized and lead to

a both time and processor-optimal parallel algorithms for: the problem, i.e.,

parallel O(log N) algorithms with O(N) processors. The parallel algorithms

developed in this paper, in addition to their theoretical significance, are

also practical from an implementation point of view due to their simple

architectural requirements.

1

*

, NOMENCLATURE

N

P
1)1

O(i, i+l)

Number of total Degree-Of-Freedom (DOF) of system

Position vector from OJ to O,, pi+l ~ = p
1 i

3x3 matrix describing the orientation of frame i+l with

respect to frame i.

Mass of link i

First and Second Moment of mass of link i about point 01

Spatial inertia of link i about point Oi

m
1

hi, k,

1,

9A= diag{Ii}clR6Nx6N Global matrix of spatial inertias, i = N to 1

McRNXN

A-lcR6x6

Symmetric Positive Definite (SPD) mass matrix

Inverse of Operational Space mass matrix

jcd’”” Jacobian matrix

9A
= col{f3i}&RN”l Global vector of joint positions, i = N to 1

Q ~ CO1{Q,}CRNX1 Global vector of joint velocities, i = N to 1

Q“ ~ CO1{Q,}CRN”l Global vector of joint accelerations, i = N to 1

7Q COl{T,}C~Nxl Global vector of applied joint forces, i = N to I

3x 1
w Li&R

i’
Angular and linear acceleration of link i (frame i+l)

v 3x 1;i&R1’
Linear velocity and acceleration of link i (point Ot)

Spatial velocity of link i

Spatial acceleration of link i

vi col{vi}&R6N”l Global vector of link Velocities, i = N to 1

Global vector of link accelerations, i = N to 1

Force and moment of interaction betw;en link i-l and link

tie col{ii}cR6Nxl

f,, 3“1
nicR

[1F ~ ‘i dx’1 f
i

Spatial force of interaction between link i-l and link i

‘Y ~ COl{F~}ClR6Nxl

H,CFY

M ~ diag{Hi}cR6Nx6N

Global vector of interaction forces, i = N to I

Spatial axis (map matrix) of joint i

Global matrix of spatial axes, i = N to 1

2

Figure l. Links, Frames, and Position Vectors
Cl : Center of Mass of Link i

n

8+ 6=WQ=3=m] -- P% PR3 -- P’R4 m~ - p~6
+8

PR7 - F%

Shuffle Exchange augmented with Nearest Neighbor (SENN)Figure 2. Perfect
Interconnection,
Solid lines are shuffle and
Double solid lines convert

dashed lines are exchange.
the interconnection to nearest neighbor.

Figure 3. Architecture for Multilevel Parallel Computation of the Algorithm.
(Shuffie Exchange horizontal processors interconnection is not shown)

3

.

.
I. INTRODUCTION

The application of single open-chain robot manipulators

tasks involves the interaction with the environment, This

constrains the motion of the End-Effecter (EE), resulting

for many typical

interaction

in a single closed-

chain system, Although, topologically, such a system represents a rather

simple example of closed-chain mechanisms, from a computational point of view,

its dynamics simulation (or, forward dynamics solution) is significantly more

demanding than that of a single open-chain system. In addition to the solution

for constraint force, it requires twice the solution of forward dynamics of

the open-chain system as well as the computation of the inverse of the

Operational Space Mass Matrix [II of the open-chain system, A-i.

Serial algorithms for forward dynamics of single closed-chain system have

been proposed by Orin and McGhee [2], Featherstone [3,4], Lathrop [5], Lilly

[61, Lilly and Orin [7,81, Brandle, Johanni, and Otter [91, Rodriguez,

Kreutz-Delgado, and Jain [10]. The works in [5,6,8,9,101 include the

development of O(N) algorithms which, asymptotically, represent the most

efficient method for serial solution of the problem.

Despite the significant improvement in the efficiency of serial algorithms;

there is considerable motivation for devising faster algorithms for the

problem. This ranges from the need for extensive off-line simulation

capability for design and evaluation purposes to real-time implementation for

controlled simulations and teleoperator training. In particular, for many

. .
anticipated space teleoperation application a faster-than-real-time simulation

capability will be essential [11,12]. Given the relative maturity of serial

algorithms, it is clear that any significant improvement in the computational

efficiency can be only achieved through exploitation of a high degree of

parallelism. However, unlike the serial computation, there seems to be no

report on the development of parallel algorithms for the problem.

4

The development of efficient parallel algorithms for forward dynamics of

both single open- and closed-chain systems is a rather challenging problem. It

represents an interesting example for which the analysis of the efficiency of

a given algorithm for parallel computation is far different and more complex

than that for serial computation. In fact, the previous results [12,13,14] and

the results of this paper clearly indicate that those algorithms that are less

efficient (in terms of either asymptotic complexity or number of operations)

for serial computation provide a higher degree of parallelism and hence are

more efficient for parallel computation.

From an algorithmic standpoint, the forward dynamics solution of single

open- and closed-chain systems are closely related. The O(N) algorithms for

the single closed-chain system rely on an O(N) procedure for solution of the

They also rely on an O(N) recursive procedure for

This recursive procedure has a structure similar to that

computation of the O(N) algorithms for open-chain systems,

in the computation of the articulated-body inertia (for’

open-chain system.

computation of A-l.

encountered in the

or more precisely,

example, compare Eq. (43) in [81 with Eq. (45) in [15].) Consequently, the

challenge in parallelization of the O(N) algorithms for both single open- and

closed-chain systems is the same. More precisely, it resides in the

parallelization of the structurally similar nonlinear recurrences that arise

in the computation of the articulated-body inertia and A-l.

An investigation of parallelism in forward dynamics solution of open-chain

systems by analyzing the efficiency of existing algorithms for parallel

computation is reported in [12,13]. This investigation rely on two fundamental

results, established in [16], regarding the O(N) algorithms for the problem.

The first result is that, at a conceptual level, the O(N) algorithms can be

essentially considered as a procedure for recursive factorization and

inversion of mass matrix [17,18]. The second result is that, at a

5

.
computational level, the O(N) algor

articulated-body inertia [15].

thins lead to the computation of the

Building upon these two fundamental results, the investigation in [12,131

led to two main conclusions. Firsi

sequential, that is, parallelism

precisely, the main bottleneck in

the O(N) algorithms are strictly

n their computation is bounded. More

parallel computation of O(N) algorithms is

in parallelization of the nonlinear recurrences for computation of the

articulated-body inertia, As shown in [12,13], this nonlinear recurrence

belongs to a class of recurrences which are well known to be strictly

sequential (The reader is referred to [12-14] for a more detailed discussion.)

In fact, not surprisingly, various approaches proposed for parallel

computation of forward dynamics of open-chain systems are based on the

parallelization of the 0(N3) and O(N2] algorithms [XX, 12,13,19-22) and there

seems to be no report on parallel computation of the O(N) algorithms.

The second conclusion in [12] was regarding the existence of a both time-

and processor-optimal parallel algorithm, i.e. , an O(Log N) parallel algorithm

with O(N) processors, for the problem. If there indeed can be such an Optimal

parallel algorithm, then it must be derivable from an O(N) serial algorithm.

Since existing O(N) algorithms are strictly sequential, the first step in

deriving the optimal parallel algorithm is to develop a new serial O(N)

algorithm with efficiency for parallelization in mind, Such an O(N) algorithm

can only be developed by a global reformulation of the problem and not an

algebraic transformation in the computation of existing O(N) algorithms.

From a physical viewpoint, a given algorithm for the problem can be

classified according to its interbody force decomposition strategy, From the

standpoint of computation, the algorithm can be classified based on the

resulting factorization of the mass matrix which correspond to the specific

force decomposition strategy (see [13] for a more detailed discussion,) A new

6

.
algorithm based on a global reformulation of the problem is then the one that

starts with a different and new force decomposition strategy and results in

a factorization of mass matrix (see also the brief discussion in $ 11.C.)

Interestingly, a recently developed iterative algorithm in [23,241 for

open-chain system represents such a global reformulation of the problem. It

differs from the existing O(N) algorithms in the sense that it is based on a

different strategy for force decomposition, In [13,14,25], we have shown that

this strategy leads to a new and completely different factorization of M-* in

form of Schur Complement, This factorization, in turn, results in a new O(N)

algorithm for the problem which is strictly efficient for parallel

computation, that is, it is less efficient than other O(N) algorithms for

serial computation but, it can be parallelized to achieve the time lower of

O(Log N) with O(N) processors.

In this paper, we show” that this factorization of M -1
can be used to derive

a new Schur Complement factorization of A-l. We also show that the application

of Schur Complement factorization of M-l and A‘i for the forward dynamics

solution of the single closed-chain systems results in a new O(N) for the

problem. This O(N) algorithms, though not competitive for serial computation,

can be parallelized, leading to an O(Log N) parallel algorithm with O(N)

processors for the problem. To our knowledge, this represents the first

optimal parallel algorithm for the problem.

This paper is organized as follows. In $11 notation and some preliminaries

are presented. The solution procedure for the forward dy;amics of a single

closed-chain system is reviewed in $111. The Schur Complement factorization

of M-* and A-l are derived in $IV. Efficient serial implementation of the

resulting O(N) algorithm is discussed in $V, Parallel computation of this new

O(N) is discussed in $VI wherein a multilevel parallel O(Log N) is also

presented, Finally, some concluding remarks are made in ~VII.

7

II

A,

Notation and Preliminaries

Spatial and Global Notation

In the following derivation, we use spatial notation which, although iS

slightly different from those in [3,4,17,18,231, allows a clear understanding

and comparison of the various algorithms, For the sake of clarity, the spatial

quantities are shown with upper-case italic letters. Here, only joints with

one revolute DOF are considered. However, all the results can be extended to

the systems with joints having different and/or more DOFS.

With any vector V, a tensor Q can be associated whose representation in any

frame is a skew symmetric matrix:

‘=[:;3: -$1
where V v

(x)’ (y)’
and V are the components

(z)

The tensor ~ has the properties that VT = -~

vector cross-product operator (T denotes the

to the vector V is defined as

of V in the frame considered.

and ~lV2 = VIXV i.e., it is a
2’

transpose). A matrix ~ associated

where here (and through the rest of the paper) U and O stand for unit and zero

matrices of appropriate size. The spatial velocities of two rigidly connected

points A and B are related as

VA = ;: JfB . .*

where P* ~ denotes the position vector from B to A. The matrix ;~ ~ has the
, ,

properties as

}AB}BC = jAc and (~AB)-l =;BA
,, , ,

(1)

The spatial forces acting at two rigidly connected points A and B are related:

FB = iA ~FA
,

If the linear and angular velocities of point A are zero then

8

.
fiA = P: &,

In general, the spatial inertia of link i about point j is denoted by 1 l,J”

The spatial inertia of link i about its center of mass, Ii cl, is given by,

[1J O
I

i.. 6x 6= CR
l,C1

O m~U

,The spatial inertia of body i about point 0~ (designated as Ii) is obtained as

(2)

which represents the parallel axis theorem for propagation of spatial inertia.

In our derivations, we also make use of global matrices and vectors which

lead to a compact representation of various factorization. For the sake of

clarity, the global quantities are shown with upper-case _ letters. A

bidiagonal block matrix P is defined as

P=

u

-;N ~ u o

0 -F uN-2
6NX6NCR

J

Note that, according to our notation, P~+l ~ = Pi. The inverse of T iS a lower
,

triangular block matrix given by

-1
3’=

u

FNN1 u
*-

F i’N1N2 u
N, N-2 -*-

o
6NX6N

CR

B. An Operator Expression of Jacobian Matrix

Following the treatment in [101, a factorization of Jacobian matrix by

using our notation can be derived as follows. The velocity propagation for a

I 9

serial chain of interconnected rigid body is given by (Fig. 1)

V, - i’; /i ~ = H,Qi (3).-

which, by using the matrix F’, can be expressed in a global form as

PTv = Ml +.? = (PT)-lHQ (4)

The EE spatial velocity, VN+I, is obtained by writing Eq. (3) for i = N+l as

v - ;;VNN+l = o * VN+l = FjfN (5)

Let us define a matrix /3 = [;; O 0 . . . 01cR6X6N. From Eqs. (4)-(5), we get

vN+l = (3 V(3(PT)-*NQ (6)

The Jacobian matrix is defined by relating the EE spatial velocity and joint

velocities as

vN+l . $Q

From Eqs. (6)-(7) a factorization of Jacobian matrix is then derived as

> = 8(PT)-134-

C, Equations of Motion

The equations

given by

MQ =3 - b(e,Q)

Defining

of motion for a single (open- or closed-chain) arm are

- $FN+l

+ ~TF andN+I’
b’(f3, Q,FN+l) = b(e,Q

3T =9- b’ (9, Q,FN+1:

Eq. () can be written as

MQ = 3* * Q = M-%* . .

(7)

(8)

(9)

(lo)

The Vector b’(f3,Q,FN+1) represents the contribution of nonlinear terms and the

external spatial force (F). For an open-chain arm, FN+ 1 ~+1 is specified and

hence the vector b’(9,Q,FN+l) can be computed by using the Newton-Euler (N-E)

algorithm [26] while setting Q to zero. In Eq. (10), % ~ col{FTi}cRNxlT

represents the acceleration-dependent component of the control force.

In deriving the factorization of mass matrix, it is assumed that the vector

10

b’ (C3, Q,FN+I) and subsequently 3T are explicitly computed. Therefore, the

multibody system can be assumed as a system at rest which upon the application

of the control force 3T accelerates in space, The propagation of accelerations

and forces among the links of serial chain are then given by. .

i, = ;: ~ii ~ + HiQi. - (11)

(12)

Equations (11)-(12) represent the simplified N-E algorithm (with nonlinear

terms being excluded) for the serial chain. Note that, the force decomposition

strategy of the N-E algorithm is given by Eq, (12). As shown in [17,181, this

strategy leads to a specific factorization of 4. It should be pointed out that

the recursive factorization of A-’ in [16-18] can be shown [131 to be a

factorization resulting from the specific force decomposition strategy of the

Articulated-Body Inertia algorithm given by Eq. (26) in [15].

III. Dynamics of a Robot Arm in Contact with Environment,

A. Dynamic Equations of Motion

Our problem statement of the dynamics of a single robot arm in contact

with the environment mainly follows the treatment presented in [3,6,7]. For

closed-chain systems Eq. (9) is written as

AtQ = 3’~ - $%+1 (13)

where F
N+ 1 is the unknown spatial contact force exerted by the EE and

3; =7 - b(8,Q)

The vector b(O,Q) can be computed by using the N-E algorithm while setting

both Q and FN+l to zero. Equation (13) can be rewritten as

Q = A-13* - fl-i$TF
T N+ 1

= Q. - Qc

Q. = ~-ly,
T

~c = M-l~TF
N+I

where Q is the vector of joint accelerat
o

.
system and Qc is the vector of joint acce

11

(14)

(15)

(16)

ons of unconstrained, or open-chain,

erations resulting from the spatial

contact force. From Eq. (7

v~+1 = ,jQ + ~Q

the spatial acceleration of EE is derived as

(17)

By substituting Eqs. (14)-(16) into 17) it follows that

- vCN+l (18)

(19)

(20)

where V
Oti+ 1

is the EE spatial acceleration of open-chain arm and ~
CN+l is the

EE

A
-1

is

spatial acceleration resulting from the contact force. The matrix

= JM-1>TcR6X6

the inverse of operational space mass matrix [1], The conditions for

(21)

positive definiteness of matrix A-l is discussed in the appendix, Throughout

the rest of the paper it is assumed that A-l is positive definite.

B. Model of Contact

The EE of an open-chain arm has six DOFS. The contact with the environment

constrains the motion of the EE and results in the loss of DOFS. Modeling of

contact has been discussed in literature (see, for example, [xx,xx]).

Following [3,6,7] the contact can be modeled as a multiple-DOFs joint (joint

N+l) connecting the EE and the environment. Let HN+l and W stand for the
N+l

map matrices of joint N+l representing the motion (unconstrained) and

constraint vector subspaces, respectively. The two vector spaces are

orthogonal, that is,

H;+lWN+l

For the

in [6,7

H;+lHN+l

= O and W~+lHN+l = O (22)

sake of simplicity and with no loss of generality, let us assume, as

, that HN+I and WN+I are orthonormal, that is,

= U and W~+lWN+l = U

Let nf and nc denote the number of DOFS and the number of degrees of

constraint (DOC) of the EE, respectively, with nf + nc = 6. In this case,

HN+1cR6xnf and WN+1cR6xnc. Note that, as will be seen in $IV, this modeling of

12

Joint N+l is similar to the way that other joints of arm are modeled,

The EE spatial acceleration and force are given by [6,7]

Ii = HN+lGr + W GN+] N+l C (23)

F = HN+lK~+ WN+lKCN+ 1 (24)

where GF and K~cRnr and G and KccRnc. Following [6,7], two types of contacts
c

are considered:

Type I. Cc and K~ are specified and GF and KC need to be computed,

Type 11, Gc is specified and

K~ = $Kc + d (25)

where matrix @ and vector d are known. For this type, G ~, K~, and KC need to

be computed.

C. Forward Dynamics Solution

We briefly review the dynamic solution for the two types of contact as

presented in [6,7]. Our main purpose, however, is to analyze the computational

steps involved in the solution which is essential for developing serial and

parallel algorithms discussed in $IV and $V.

From Eqs. (18)-(21) it follows that

v - A-lFN+I = tiN+lON+ 1 (26)

For Type I contact, substituting Eqs. (23) and (24) into Eq. (26) leads to

i - A%+lON+ 1 = HN+lG~ + WN+lGC (27)

Multiplying both sides of Eq. (27) by lJ~+l and using Eq. (22) gives:

W:+li,l - W;+IA-*FN+I = Gc

from which, after some manipulation, it follows that

(28)

(W;+lA-lWN+l)K = VT i - W;+lA-lH K - Gc (29)N+l N+l N+I F c

If A-l is positive definite then the matrix W~+lA-lVN+lcRncxnc is also

positive definite (see Appendix) and hence Eq. (29) can be solved for Kc. Note

that, if the right-hand side of Eq. (29) is obtained then the computation of

Kc requires the solution of an ncxnc SPD linear system.

13

For Type 11 contact, by substituting Eqs. (23)-(25) into Eq. [26), it

can be shown that [6]

((W;+lA-l)(HN+l@ + WN+l))K = WT V - W;+lA-lHN+ld - Cc
c N+l N+l

which, assuming that the coefficient matrix is positive definite, can be

solved for K~. K~ and FN+l can then be computed from Eqs. (25) and (24).

As can be seen, the explicit computation of the vector ~Q is needed in the

solution procedure. It seems, however, that less attention has been paid in

the literature to the efficient computation of this vector. In [27] a method

for computation of the matrix ~ is proposed. Note, however, that the explicit

computation of ~ is not needed. In fact, as noted by Featherstone [15] and

discussed in [28], the vector ~Q can be obtained with” almost no additional

cost as a byproduct of the computation of the vector b’ (e,Q), To see this,

note that in Eq. (17) if Q is set to zero then the vector ~Q represents the

spatial acceleration of the EE resulting from nonzero vector of joint

velocities (Q). Recall that the vector b’(e,Q) is obtained by computing the

N-E algorithm while setting the vector Q to zero, Therefore, if the N-E

algorithm is slightly modified so that the spatial acceleration of the EE,

denoted by ~;N+l, is also computed then we simply have ~;~+l = ~Q.

Based on the above discussion, the computational steps of the dynamic

solution procedure are summarized in Table I

D. Extension to other Models of Contact

We considered the specific model of contact in [6,7] qince it represents a

good example which can be used to highlight the computational requirements of

the forward dynamics solution of the single closed-chain system. Other models

of contact will lead to a rather slight modification in the computation. To

see this, note that, a different model of contact results in a different

strategy for computation of the contact force, F Once this force isN+l”

obtained the rest of the computations remain the same as in Table 1, In

14

Step I: Compute %;

1, Compute b’ (O, Q) and ~~~+1 = ~Q by using the N-E algorithm while setting Q

and F ~+1 to zero.

2. Compute 3; = 7 - b’(e,Q)

Step II: Compute ~o~+l

1. Compute Q. = M-13;

2, Compute ~~~+1 = ~M-lY~ = J’QO

3, Compute ~o~+l = V;;+l + ;~~+l

(30)

(31)

(32)

(33)

Step III: Compute A-i

Step IV: Compute FN+l

1. Solve Eq. (29) for Kc“

2. Compute FN+l from Eq. (24).

Step V: Compute Q

1. Compute 5“ = #TFN+l (34)

2. Compute QC = M-*$TFN+l = M-19’. (35)

3. Compute ~ = do - Qc. (36)

Table I. The Computational Steps of Forward Dynamics Solution Procedure

general, Eq. (26) represents six equations in twelve unknowns, i.e., the

twelve components of FN+l and VN+I, Note that, the computation of VON+I is

independent of the model of contact considered and only requires the solution

of the open-chain system. If the problem is well posed t~.en another set of six

equations can be derived leading to the complete solution for FN+l and ~N+l.

In the following a different model of contact is briefly discussed.

Lathrop [51 considered several examples of contact and proposed a more

general model in which FN+l and ~N+l are given (in some frame) by

i = Ml~ + KI (37)N+l

F = MJ + K2 (38)N+l

15

where the matrices Ml and M2cR6X6 and the vectors K and K2cR6 are known. The

unknown vector QCLR6 represents the six independent motion and force DOFS.

Clearly, once O is obtained F and ~~+1
N+ 1 can be computed from Eqs. (37)-(381

and the problem is then reduced to that in previous section, By replacing

Eqs. (37)-(38)

(A-lM2 + MI)Q =

If the problem

definite, then

into Eq. (26) it follows that

i - (K1 + A-11C2)ON+ 1 (39)

is well posed, i.e. , the coefficient matrix is positive

Q can be obtained by solving the 6x6 linear system in Eq, (39).

IV. Schur Complement Factorization of A-l and A-l

A. The Interbody Force Decomposition Strategy

The iterative algorithms in [23,24] for forward dynamics solution of open-

chain arms are based on a decomposition of interbody force of the form:

Fi = HIFTi + WiFsi (401

where F~i is the constraint force and Vi is the orthogonal complement of Hi

[29,301, that is,

W;H ~ = O and H~Wi = O (41)

For a joint i with multiple DOFS, say ni<6 DOFS, HicR6xni and W eR6x(6-ni).
i

Insofar as the axes of DOFS are orthogonal (which is the case considered in

this paper) the matrix HI is a projection matrix [29] and hence

H;Hi = U (42)

It then follows that the matrix Wi is also a projection matrix [29,301, i.e.,

W;wi = u . (43)

H~H~ + Wlwy = U (44)

An example of matrices H, and W, for one DOF revolute joints is given in $V.A.

For a more detailed discussion on these matrices see [29,301.

The decomposition in Eq. (40) seems to be more physically intuitive than

that of the Articulated-Body Inertia algorithm, given by Eq. (40) in [15],

since it expresses the interbody force in terms of two physical components:

16

the control (or, working) force and the constraint (or, nonworking) force.

That such force decomposition has not been considered as a viable alternative

for deriving algorithms for direct serial and parallel solution of the p“roblem

is not surprising. The decomposition in Eq. (40) naturally leads to explicit

computation of the constraint (and interbody) forces. In fact, researchers

have often argued that since the constraint forces are nonworking forces their

explicit evaluation, which leads to the computational inefficiency, should be

avoided. While this argument is in general valid for serial computation- which

is also supported by the results in [13,141 for open-chain systems and the

results of this paper for single closed-chain systems- the decomposition in

Eq . (40) leads to new factorization of Al-l and A-l and subsequently optimal

parallel algorithms for forward dynamics of both open- and closed-chain arms.

B. A Schur Complement Factorization of A-l

In [13,14], we have shown that the force decomposition in Eq. (40) leads to

a new factorization of M-l and subsequently a new O(N) algorithm for the

forward dynamics of open-chain arms. We briefly review this factorization of

m
-1

since not only it is needed for solution of closed-chain arms but, more

importantly, it is also essential in deriving the factorization of A-i.

To begin, let us define following global matrix and vector for i = N to 1:

w~ A
diag{lJi}cR6Nx5N and 9s = col{F~i} CIR5N

Equations (11)-(12) and (40)-(44) can be now written in global form as

FTC = tiQ ..

P3 = 9fi

3= K7T + w%~

wT3t’ = O and H~W = O

NT3t’ = U and WTW = U

MHT + WWT = u

From Eqs. (45), (46), and (48) it follows that

17

(45)

(46)

(47)

(48)

(49)

(50)

Q = 9-i PY

W= P=+ = wT3@ = (1

Replacing Eq. (51,

w=p~g-lp3 =0

into Eq. (52), we get

Substituting Eq. (47) into Eq. (53) yields

WTPT9-lF’(A’YT + W3~) = O * WT?’T9-1PW7~ = -WTYT9-lTRYT, or

A?3S = -219T

where A ~ WTPT9-lPW CR5NX5N and ~ ~ WT.PTY-lPR ~R5NXN
are block tridiagonal

matrices. From Eqs. (55) and (47) it follows that

[
3 = R - 1w(wTpTg-lpw)-lwTpTg-lpH yT

and substituting Eq. (56) into Eq. (51) leads to

ti=
[

9 -13’ H’ - 1w(wTpTg-lpw)-lwTpTg-ly~ 3T

(51)

(52)

(53)

(54)

(55)

(56)

(57)

By multiplying both sides of Eq. (45) by N and using Eq. (49) Q is computed as

HTRQ = 3fT%’Tti * Q = 3fTPTti (58)

Finally, by replacing Eq. (57) into (58) it follows that

[
Q = 3fT3’T9-l?’R

1
_ ~TyTg-lpw(wTpTy-lpw)-lwTpTy-lp~ 3T (59)

In comparison with Eq. (10), an operator factorization of M-l, in terms of its

decomposition into a set of simpler operators, is given by

M -1
= RTPT9-lPH - HTPT9-lPW(WT?’T9-lPW)-1WTPT9-lPR’ (60)

Let ~ ~ ~TpTy-lpRcRNxN ~-1
can now be expressed as

M -1
=G - BT$-lB (61)

The matrix G, similar to A and 29 is block tridiagonal. Furthermore, as shown

in the appendix, d and G’ are symmetric and positive defin”ite (SPD), This

guarantees the existence of S4-1

The operator form of M-l given by Eq. (61) represents an interesting

mathematical construct. To see this, note that, if a matrix !? is defined as

[1S4B
l?~ ~R6Nx6N

BT G’

18

then G’ - TITA-113 is the Schur Cornplernent of d in 1? [311. The structure of

matrix f not only provides a deeper physical insight into the computation but

it also motivates a different and a much simpler approach for derivation of

the factorization of M-l and its associated O(N) algorithm [13,321.

It is worth pointing out that by using the matrix identity

(E - x~y)-] = E-l + E-l~(~-l _ yE-l~)-lyE-l

in Eqs. (60)-(61), an operator expression of M can be obtained as

M=

=

G ‘1 + G-*BT(A-l - m-*-BT)B(l-l

(3?TTTY-l?W)-1 [
+ (RTPT9-1P3{)-l (NTPT~-lTw) (WTY’T9-lPW) - (IVTT’T9-l?’R)

(62)

(63)

However, this operator expression of M is significantly more complex

associated algorithm is less efficient (in terms’of number of operat.

other operator expressions and their associated algorithms given in

and its

ens) than

17,18].

This clearly indicates that the force decomposition given by Eq. (42) leads

more naturally and efficiently to the computation of M-l rather than M.

C. A Schur Complement Factorization of A-l

The new factorization of M-l directly results in a new factorization of

-1A . This factorization is derived by substituting the factorization of $,

given by Eq. (8), and M-l, given by Eqs. (60)-(61), into Eq. (21):

A
-1 = ~M-l}T = /3(PT)-1R(RTPT9-l?’3t - NTPT9-1Tw(wTPT9-lPw)-1wTPT9-lPM)HTP-]pT

which can be written as

A
-1 = p((YWl(@)?%-1 - 9-1Pw(wTPT9-lPw)-lwTPT$-l)P(RflT)P-1)/3T (64)

The key to simplification of this expression is the fact that, from Eq. (50),

we have

3fRT = u - WWT (65)

By replacing Eq. (65) into Eq. (64) and after some involved algebraic

manipulations, a simple operator expression of A-l is derived as

A-1 = (M-1/3T - p9-1Pw(wTPT9-lTw)-1wTPT9-lpT (66)

19

This expression can be further simplified since

&= = (39-13’W = [F:I;lWN o 0 . . . 01CR6’5N (67)

D= B9-lPT = ;:l:l;N (68)

The parallel axis theorem in Eq, (2) can be also used for propagation of the

inverse of spatial inertias. To this end, by using Eq, (l), Eq. (68) can be

rewritten as

D= ((FJ-%N)(PJT = (;N+l /j;+l J-1 = I;lN+l,
which implies that the matrix II is just the inverse of spatial inertia of link

N about point ON+I.

This factorization of A-l can be written in form of Schur Complement as

A
-1
=D- eTd-18 (70)

Note that the matrix d is the same as in Eq. (61). Let us define a matrix I?’:

S]Y’ ~ d e d“”’”
eT D

A‘1 is then the Schur Complement of .4 in Y?’.

The factorization of A-* has a structure similar to that of M-l since it, is

also described in form of Schur Complement. As for M -1 , the structure of

matrix !?’ not only enables a simple physical interpretation of this

factorization but also motivates an alternate and somehow simpler approach for

its derivation [311. However, it should be emphasized that the similarity in

the factorization of M-l and A-l is not limited to their analytical form

(i.e., the Schur Complement form) but it further extends to their physical

interpretation. To see this, let us rewrite M-l and A-l ~S

M
-1 = HTPT(9-1 - 9-1PW(WTPT9-lF’W)-1WTPT9-l)?W

A
-1 = 6($-1 - g-lpw(wTpTj-lyw)-lwTpTj-l)~T

Let us also define a matrix X as

x = 9-1 - 9-1PW(WTTT9-lPW)-1WTPT9-1

M
-1

‘i and A can now be expressed as

20

M -1 = HTPTK?W

A
-1

= (MpT

As shown in [31], the matrix K has a simple physical interpretation. The fact

that At-l and A-l can be both derived from K then allows a unified and

alternate physical interpretation of factorization of JI-l and A‘1 based on

the physical interpretation of matrix K.

From a computational perspective, a main advantage of this structural

similarity resides in the improved efficiency in both serial and parallel

computation, As shown in $V and $VI, for the cases (such as the one in this

paper) wherein the computation of both M-l and A-l is needed, this structural

similarity can be exploited to increase the computational efficiency

V. A Serial O(N) Algorithm for Forward Dynamics of Single Closed-Chain Arm

In this section, a serial algorithm for the problem based on the Schur

Complement factorization of M-l and A-l is discussed. This discussion

provides a deeper insight into the structure of computation while using these

factorization. It also highlights some issues that need to be considered to

achieve a greater efficiency in both serial and parallel computations.

A. Operator Application of M-l

As shown in [25], the explicit computation of M-’ can be performed in 0(N2)

steps. Once M-l is computed, its multiplication by a vector also requires

0(N2) operations. Note, however, that only the result of the multiplication of
.

1
M ‘1 by ~ vector, as in Eqs. (31) and (35), which corresponds to an operator

computation is

performed more

needed. This

efficiently in

I For the sake of generality, we consider an application of M-l of the form:

application of ht-i, rather than its explicit

operator application, as shown below, can be

only O(N) steps.

Qc = At-13c (71)

21

For both serial and parallel computation it is more efficient to rewrite the

above equation, after substituting Eq. (60), as

QG [= 3tTPT u -
1

9-1PW(WT3’T9-lTW)-lWTPT Y-lYW
c (72)

Here, the key to achieving a greater computational efficiency is to perform

matrix-vector multiplication instead of matrix-matrix multiplication. In this

regard, the products of matrices in Eq. (72) do not need to be computed

explicitly and only the explicit computation of matrix d is needed. Given 3
c’

the computational steps in implementing Eq. (72) then consist of a sequence of

matrix-vector multiplications and a vector addition wherein the matrices,
.

except for d-i, are either diagonal or bidiagonal. Multiplication of a vector

by matrix AI-l is equivalent to the solution of a SPD block tridiagonal system.

Thus far, the factorization of M-l has been presented in a coordinate-free

form, Before its implementation, however, the tensors and vectors involved in

its computation should be projected onto a suitable frame. The choice of the

appropriate frame and the way that the projection is performed significantly

affect the efficiency of both serial and parallel computations.

If the rotation of the one-DOF revolute joint i is given as the one about

the Z axis of frame i then

[1

Zi
Hi = m6

o

The matrices Hi and Vi in frame i are given as

Multiplication of any vector or matrix by ‘Hi and ‘Wi does not require any

computation but an appropriate permutation of the elements of the vector or

the matrix. However, in any other frame W~ has a dense structure and its

multiplication by another matrix requires a rather significant amount of

22

operations. This clearly indicates that any projection of equations should

fully Rxploit the sparse structure of ‘Hi and particularly of ‘Wi.

The matrix d and its elements are given as

d = T’ridiag [B,, Al, EI~ ~]

Ai = W:(f;l + }T,.+;!l~,.l)w, i= N,N-1, ,.., I

B, = -W;I;Y’,W,+l i =N-l, N-2, 1

Generalizing the result of Eq. (69), it follows that

(73)

(74)

To exploit the structure of Wi, the submatrices Ai are computed in frame i as

Note that, 1, ~ ~ and its inverse are constant in frame i and hence can be
-,

Precomputed. From Eq. (2), I;l can be computed as

(75)

(76)

Both II and 1~1 are constant in frame i+l. However, while 11 has a simple and

sparse structure, I ~1 has a dense structure, Rather than projecting ‘+11-1
i

onto frame i, it is more efficient to first project J~i and S~ onto frame i as

lJ = C(i, i+l)i+lJiC(i+l, i) +
i

(lJ/ = C(i, i+l)(i+i Ji)-lC(i+l, i) (77)

%j = C(i, i+l)i+lS
i (7 8)

and then compute (11,)-1 in frame i according to Eq. (76). The computation of

Bi is also performed in frame i as follows. Let us define

Qk p’,wi+l * l+)?/
1 i

= (l+lIi)-ll+lFii+lwi+l
. .

[

C(i, i+l) o
C(i, i+l) =

1

6x6
CR

o C(i, i+l)

The matrix W, is constant in frame i+l and can be precomputed. It is projected

onto frame i as

‘Qi = C(i, i+l)i+lvi (79)

23

Then, B, can be computed as

B, = -’W:*W, (80)

which does not need any computation but a permutation of matrix ‘Wi. In order

to further exploit the structure of *W1 and lH,, the rest of the computations

in Eq. (72) is also performed in frame i. To do so, let us define a matrix ??

R=

u

-C(N-l,N)N~N-l u

o

bo

0

-C(N-2,N-l)N-%N ~

o

0

0
u

-C(1,2)%’I u

Let us also define following projections:

3t’= diag{lHi}; ‘W = diag{iWi}; and 9-1 = diag{i~~l}—

6NX6Nc1?

Through the rest of the paper, an underlined global vector or global block

diagonal matrix indicates that the ith element of the vector or the matrix is

described in the ith frame. Equation (72) is now rewritten as

QG . jfT~T(u - 9-%wd-~w%T)9-%gFc (81)— —— —

which implies that all the computations are performed in frame i.

The most computation-intensive part in implementing Eq. (81) is the

solution of the SPD block tridiagonal system. The block tridiagonal system can

be solved by both Block Cyclic Reduction (BCR) algorithm [33-35] and block

LDLT factorization [361 in O(N) steps. However, for serial computation the

latter algorithm is more efficient [34]. Using the block LDLT algorithm, the

solution of the SPD block tridiagonal system consists of””three steps [361:

factorization, forward elimination, and back substitution, wherein the first

step i.s computationally more expensive than the second and third steps. Note,

however, that for the two applications of Al-l in Eqs. (31) and (35), the

factorization needs to be performed once.

The projection scheme discussed above and the explicit computation of

24

matrix S9 can be performed in O(N) steps. The matrix-vector multiplications in

Eq. (81), which involve block diagonal and block bid

as the vector addition can be also performed in O(N)

cost of the SPD block tridiagonal system solution, i

computational complexity of implementing Eq. (81) is

B. Computation of A-]

agonal matrices, as well

steps. Given the O(N)

then follows that the

of O(N).

Both the explicit computation of A-l and its operator applications can be

performed in O(N) steps. Here, the explicit computation of A-l is considered

since its different operators applications in Eq. (29) require simple matrix-

vector operations which can be computed with flat costs.

Anticipating the fact that the application of A-l is needed in frame N+l

(e.g., for the case considered in $111, WN+I, HN+I, and the Vectors /(~, Kr,

etc. , are given in frame N+I), the matrix A-l is computed in this frame as

A
-1 = N+II-l

- GT5K1&N,N+l (82)

wherein the matrix .5, or more precisely, the only nonzero element of G, i.e.,

lSN , is computed as

&N = ‘Wj2(N, N+l)(N+11;1N+*;N) (83)

Note that, with this projection the matrix ~Td-~G and subsequently A-l are

computed in frame N+l.

The matrices ‘+11~1 and ‘+~I~~N+~ FN are constant in frame N+l and hence

can be

$4G’=&

for Q.

precomputed. The computation of .4-18 is equivalent to the solution of

(84)-.

This represents the solution of a SPD block tridiagonal system for six

right-hand side vectors which can be obtained in O(N)

sparse structure of Gr: the computation of &T(l can be

@ = GTQ = &j2N&R6”6

where

‘“ by an

(2Nccw is the Nth element of S2. A-l can be then

addition of two 6x6 matrices. This implies that

steps. Exploiting the

reduced to

(85)

computed from Eq. (82)

the cost of explicit

25

computation of A-l is of O(N). If the block LDLT factorization of matrix d is

already computed then Eq. (84) can be solved with a greater efficiency since

only the forward elimination and

C. Computation of $Qo and jTFN+l

The evaluation of $ from the

explicitly computing the product

conventional representat~on of #

back substitution steps need to be performed,

factorization given in Eq. (8), that is, by

of its factors, results in a more

as

However, the computation of ~Qo and J’TFN+l in Eqs. (32) and (34) represent

operator applications of $ and ~T which can be performed without explicit

computation of $.

The evaluation of #Q. corresponds to the acceleration propagation in the

N-E algorithm while setting Q to zero. It can be recursively computed as

“,*v = ;: ~ti;”-l + HiQoi i=ltoN+l (86)01

with QON+I = O.

The evaluation of $TFN+l corresponds to the propagation of spatial forces

among the rigidly connected links of the arm. Its recursive implementation is

derived by setting ii to zero in Eq. (12) and is given by

i = N t o l (87)

-c’ = H~F, i =Ntol (88)i

The computation of the linear recurrences in Eqs. (86)-(87) as well as that of

Eq. (88) can be performed in O(N) steps. Since F~+1 is g$.ven in frame N+l and

i (and hence ~“ON+l 1 also needs to be computed in this frame, it is moreON+l

efficient to directly perform the computation of Eqs. (86)-(88) in frame N+l.

This can be achieved by first projecting the vectors Zi and Pi in frame N+l

and then performing the computation in Eqs, (86)-(88) in this frame.

26

D. Computational Efficiency of Serial Algorithm

For the solution procedure given in Table I, the application of the new

factorization of M-l and A-*, as discussed above, results in a complexity of

O(N) for computation of Steps II, III, and V. Step I requires the computation

of the N-E algorithm which can be performed in O(N) steps and the computation

of Step IV requires a flat cost independent of N. This implies an O(N) overall

complexity of the serial algorithm. Therefore, the algorithm is asymptotically

as fast as the previously proposed algorithms [5,6,8,9,101.

However, in terms of number of operations, this algorithm seems to be less

efficient than the previous algorithms. The cost of the serial solution of

forward dynamics of an open-chain arm by using the new factorization of M-l is

analyzed in detail in [13,14]. The analysis in [13,14] indicates that this

factorization results in an O(N) algorithm which, in terms of total number of

operations, is less efficient (by a factor of =3.4 for large N) than the best

serial O(N) algorithms [15,17,181 for the problem.

For a single closed-chain arm, a somewhat improved efficiency can be

expected. As discussed above, the most computational ly-expensive part in

implementing the factorization of fl-l is the block LDLT factorization of

matrix A. However,, for the two operator applications of A!-l as well as the

computation of A-l this factorization needs to be performed once. But, even by

such an optimization, it seems unlikely that these new factorization can

result in a highly competitive serial algorithm for the problem.

It should be pointed out that the manifestation of matrices Vi in the

computation dictates a certain strategy for projection of the equations to

achieve an optimal computational efficiency. This strategy is different from

those usually proposed for computation of the inverse and forward dynamics of

open- or closed-chain arm. As discussed in [13,14], any other projection

strategy will significantly reduce the efficiency of serial and parallel

algorithms resulting from these factorization.

27

VI. Parallel O(Log N) Algorithms for Forward Dynamics of Single Closed-Chain

Arm

A. Time and Processor Bounds in Computation

The efficiency of the new factorization of M-l and A-l for parallel

solution of’ the problem can be assessed by examining the parallelism in the

solution procedure of Table I while using these factorization. Here, parallel

computation of Steps I-V by using O(N) processors is discussed.

Step I. By using the parallel algorithm in [37], the N-E algorithm can be

computed in a time of O(Log N)+O(l) with O(N) processors. The vector addition

in Eq. (30) can be performed in a fully decoupled fashion in a time of O(l).

Step 11, The computation of the elements of matrix d from Eqs. (75)-(78) is

fully decoupled and can be performed in O(1) steps, The matrix-vector

multiplications in Eq. (81), which involve block diagonal and block bidiagonal

matrices, as well as the vector addition also represent fully decoupled

computations and can be performed in O(1) steps.

The block LDLT factorization algorithm seems to be strictly serial and, in

faCt, there is no report on its parallelization. On the other hand, the BCR

algorithm, while not being efficient for serial computation, is highly

suitable for parallel computation, By using the parallel version of BCR

algorithm [331, the block tridiagonal system in Eq. (81) can be solved in

O(Log N)+O(l) steps with O(N) processors. This implies that the parallel

implementation of Eq. (81) and hence the operator application of M-l can be

performed in O(Log N)+O(l) steps with O(N) processors. ,+

The projection of vectors 21 and Pi, as shown below, can be performed in

O(Log N)+O(l) steps, The linear recurrence in Eq. (86) can be computed in

O(Log N)+O(I) steps by using the Recursive Doubling Algorithm (RDA) [38]. The

vector addition in Eq. (33) can be done in O(1) by using one processor.

Step III. By using the parallel version of BCR algorithm, the solution of the

system in Eq. (84) for six right-hand side vectors can be computed in

28

O(Log N)+O(l) steps With O(N) processors. The computation of GN from Eq. (83),

8 from Eq. (85), and A-l from Eq. (S2) involve simple matrix operations which

can be performed in a time of O(1) by using one processor.

Step IV. As discussed in $111, regardless of the model of contact considered,

the computation of Step IV involves simple

be computed in a time of O(1) by using one

Step V. With the vectors Z~ and Pi already

matrix-vector operations which can

processor.

projected in Step II, the linear

recurrence in Eq. (87) can be computed in O(Log N)+O(l) steps by using RDA and

the computation in Eq. (88) is fully decoupled and can be done in O(l). As in

Step II, the operator application of M-l in Eq. (35) can be performed in a

time of O(Log N)+O(l) and the vector addition in Eq. (36) in a time of O(l).

It can be concluded the application of the new factorization of M-l and A-l

enable the solution procedure of Table I to be computed in a time of

O(Log N)+O(l) by using O(N) processors. This indicates a both time- and

processor-optimal parallel algorithm for the problem. In the following, a more

detailed practical implementation of this parallel algorithm is discussed.

B. Parallel Solution of SPD Block Tridiagonal Matrix

The solution of the block tridiagonal systems represents the most

computational ly-intensive part of the overall solution procedure. Therefore, a

central issue that affects the efficiency of parallel computation is the

choice of parallel algorithm for solution of the block tridiagonal system.

There are two variants of the BCR algorithm: the Odd-~ven Reduction (OER)

and Odd-Even Elimination (OEE) algorithms [33]. The OEE algorithm, while less

efficient than the OER algorithm for serial computation, provides additional

parallelism in both computation and communication while using the same number

of processors and interconnection structure as for OER algorithm [33].

We consider the solution of a block tridiagonal system as

Ao=w (89)

29

where @ = col{~~} and W = col{~~}, i = N to 1, with @i and vi standing for

subvectors or submatrices of appropriate size, The OEE algorithm is given as

Fori=Ntol, Do

A; = A~,B; = Bi, and @~ = *i (initialization)

End_Do

For j = 1 to M = rLog2Nl, Do

For i = N to 1, Do

End_Do

End_Do

Forj=ltoM= rLog,Nl, DO

For i = N to 1, Do

(9 0)

(9 1)

(92)

End_Do

End_Do

For i = N to 1, DO

Solve A~@~ = @~ for ~~ (93)

End_Do

where [x1 indicates the smallest integer greater than or equal to x. It should

be noted that in Eqs. (90)-(91) it is more efficient to first compute the

scalar JdJT factorization of the dense submatrices rather than their explicit
. .

inverses. The multiplication of the inverse of a matrix by another matrix can

be computed as the solution of a linear system with multiple right-hand sides.

The OEE algorithm can be regarded as a procedure for diagonalization of

matrix 4 in which a sequence of transformations are applied to both sides of

Eq. (89) resulting in a block diagonal system given by Eq. (93). In this

sense, Eqs. (90)-(91) represent the diagonalization of matrix dl while Eq. (92)

3 0

represents the updating of the right-hand side. Once matrix s’/ is diagonalized,

the solution of the linear systems required for operator applications of M-l

as well as the solution of the system in Eq. (S4) can be obtained by computing

Eqs. (92)-(93) for the corresponding right-hand sides and by using the already

computed submatrices A: and B; generated during diagonalization of matrix d.

The parallel implementation of both the OER and OEE algorithms for scalar

tridiagonal systems is straightforward. However, for block tridiagonal systems

care should be taken to achieve the optimal efficiency. In fact, it seems that

efficient implementation of either algorithms for block tridiagonal systems

has received less attention in the literature. Note

strategy represents a specific process-to-processor

this, consider the parallel implementation by using

that, an implementation

allocation scheme. To see

N processors, designated

as PR,, i = N to 1. A first possible (and more obvious) strategy for parallel

implementation of the OEE algorithm is based on allocating the computation of

A:, B;, @;, and @~ as well as all the intermediate terms in Eqs. (90)-(92) to

processor PR~. Note that, this strategy, which seems to be widely adopted in

the literature for implementation of both the OER and OEE algorithms, is

optimal for scalar tridiagonal systems.

We have developed a second strategy in which the terms A: and O; as well as

all intermediate terms involving A ~-1 are computed by PR~. The two strategies

lead to two different structures for the computations performed by each

processor as well as the communication among processors. The impact of the two

strategies on both computation and communication complex~ty of the algorithm

is discussed in [391. Here, suffice to mention that the second strategy,

presented below, not only leads to a greater computational efficiency but,

more importantly, it also provides a high degree of overlapping between the

computation and the communication which can be exploited to reduce the

communication overhead.

31

C. Strategy for Multilevel Parallel Computation

An imp

follows d

analysis

ementation of the parallel O(Log N) algorithm with N processors

rectly from the analysis in Part A. However, the theoretical

n [13,14]- which is also supported by the practical implementation

results in [40]- indicates that, for forward dynamics solution of an open-

chain arm, the parallel computation of the Schur Complement factorization of

M ‘1 by N processors results in a parallel algorithm that, despite its

asymptotic optimality, offers a limited speedup for the systems with small N.

This is due to the large constant coefficients on the polynomial complexity of

the resulting parallel algorithm. For forward dynamics solution of the closed-

chain arm, given its greater computational cost, parallel computation by N

processors, would result in even larger constant coefficients. Therefore, key

to increasing the efficiency of parallel algorithm is to reduce the constant

coefficients by exploiting a higher degree of parallelism in the computation

through a multilevel approach and by using a larger number of processors.

A first possible strategy for multilevel parallel computation is to exploit

fine-grain parallelism in various matrix-vector operations of the algorithm.

However, this would require the implementation of the algorithm on special-

purpose parallel architectures such as the one proposed in [28]. Here, we

consider a second strategy based on a coarse-grain multilevel parallel

computation with simple architectural requirements.

There are both algorithmic and architectural incentives for adopting this

strategy, From an algorithmic standpoint, the applicatio~ of the Schur

Complement factorization of M-l and A-* to the solution procedure of Table I

results in a high degree of coarse grain parallelism. For example, the

computation of Step I can be performed in parallel with the computation and

diagonalization of matrix A. Once matrix A is diagonalized, the computation of

A‘1 can be performed in parallel with the rest of the computations in Step I

32

and Step II. Furthermore, the solution of the system in Eq. (84) for six

right-side vectors essentially involves si,< decoupled processes which can be

computed in parallel by using 6N processors.

From an architectural standpoint, this approach is motivated by the fact

that, for small N, it is likely that the number of available processors of the

target architecture be much greater than N. This clearly suggests to increase

the efficiency of the algorithm by using more of the processors that would

otherwise be idle.

Clearly, depending on the number of processors employed and hence the degree

of parallelism exploited, a variety of multilevel parallel implementations of

the algorithm can be considered. Furthermore, any implementation will also

strongly depend on the features of the target architecture, e.g. ,

synchronization mechanism and processors’ interconnection structure. In the

following, we discuss an implementation of the algorithm by using 2N

processors. As will be shown, the main advantages of this implementation are

its simple synchronization and communication requirements.

D. Implementation of Multilevel Parallel O(Log N) Algorithm

For the implementation of the multilevel parallel algorithm, we consider

two interconnected processor arrays, each with N processors. The processors

are denoted as PRk i, k = 1, 2, and i = 1 to N (Fig. 3 shows the two arrays

for N = 8.) Each array is a SIMD architecture with a Shuffle Exchange

augmented by Nearest Neighbor (SENN) interconnection str~cture (Fig 2). The

SENN is optimal for the implementation of the parallel algorithm since it

perfectly matches the inherent communication structure of different steps of

the algorithm. In describing the computational steps of the algorithm, it is

assumed that the constant kinematic and dynamic parameters of link i reside in

the memory of processors PRI , and PR2 i.
,

The computation of the multilevel parallel algorithm involves an ordering

33

which slightly differs from that of serial algorithm of Table I and it is

performed according to the following steps.

Step I: Diagonalize Matrix d and Compute A-l by Processor Array PR
11

a. Projection and Computation of’ Matrix J

For i = 1 to N, Do_Parallel

1. Form C(i, i+l) and C(i, i+l),

2. Compute %, (iJ~)-l, and (lli)-l from Eqs. (78), (77), and (76).

3. Send (lli)-l to PR
2,i’

4. Compute B~ from Eqs. (79)-(80).

5. Compute A~ from Eq. (75).

End_Do Parallel

b. Diagonalize Matrix d

For j =

For

1.

2.

3.

4,

5.

6.

7.

8.

9.

10.

11.

12.

End_

1 to M = rLog2Nl , Do

i = 1 to N, Do Parallel (by all PRI ~’s)

Compute LdLT factorization of Al-l [with A; = Ai).

Solve A~-’C/-* = B~-’ for C~-’,

Send C~-’ to PR2 ,.

Compute D~-l = (B~-l)TC~-].

Send D~-’to PRI,,+2J-I.

Solve A~-’F~-’ = (B~~~J-l)T for F~-l,i

Send F~-’ to PR
2,i”

Compute G~-l = (B/-~j-l)T(A~-l)-l(BJ-lj-l)T = (BJ-lj-l)TFJ-l.i-~ i-~ i

Send G~-l to PRI, ,-ZJ-l,
. .

Compute (B~-2J-l)T = (B/-*)T(A/-ll(BjBl-l ~BJ-l)TFJ-l,*-2J-l)T = , 1

Send (B~_2j-l)T to pR ~ , ~j-I and PR
,- ,,i+2J-1’

Compute A: = At-l - D<-~j-l - GJ-l-,+2J 1.

Do Parallel

End_Do

34

.
For i = 1 to N, Do Parallel (by all PRI i’s)

13. Send A: to PR2 ~.

End_Do Parallel

c. Compute Matrix A-l

1. Initialization

For i = 1 to N, Do_Parallel (by all PRI i)

Set *Y = e~

End_Do Parallel

2. Compute 4“

For j = 1 to M = rLog2Nl, Do

For i = 1 to N, Do Parallel (by all PRI ~’s)

i.
‘ J-I)T@J-l.Compute Et-l = (B~-l)T(A~-l)-l@~-* = (Ci i

ii. Send E~-’ to PRl, i+2J-1.

iii. J-1 = ~j-lCompute Hi #(A~-*)-*V :-* = (F:-l)T~;-l.

j-l to PRI ~-zj-l.iv. Send Hi

v. Compute @~ = IJ!-l - E~~~j-l - H~~~J-I

End_Do Parallel

End_Do

3. Compute G = .$~!2 = 15~(A~)-1~~ by PRI ~.
,

4. Compute A-l = ‘+llN - El by PRI N.

5. Send A-l to PR2N by PRI N.
,

6. Wait (end of operation)
. .

Step II. Compute 3; and VON+I by Processor Array PR2 i

a. Projection

1. Form C(i, i+l) in parallel for i = N to 1.

2. Solve the linear recurrence C(i+2, i) = C(i+2, i+l)C(i+l, i), i = 1 to N-1,

in parallel by using RDA.

35

3, Fori=lto N, Do_Parallel (by all PR2 i’s)

i, Compute ‘+12, = C(N+l, i)i Z
i

ii. Compute ‘+lS1 = C(N+l, i+l)i+l Si

iii. Compute “lP, = C(N+l, i+l)i+lP
i

End_Do Parallel

b. Compute Y;

1. Compute b’(9,Q) by using the parallel algorithm in [37].

2. Compute F~j = T, - b~(8,Q), i = N to 1, in parallel.

3, Set 3C = y;.

4. Compute Xl = .Y-lX~3c.

5. Compute X2 = IVTRT.—

6. Wait.

c. Compute Q.

1. Receive A: from PR2 ,

2. Set ~~ = X;

3. Compute I/I; by repeating Step I.C.ii by processors PR2 ~.

4. Solve Eq. (XX) in parallel for all @i’s, i = N to 1, and set X3 = 0.

5. Compute X4 = 9-1RIVX3——

6, Compute X5 = Xl - X4

7. Compute ~~ = ~TZTX5

8. Set Q. = Qc

d. Compute ~o~+l

1. Solve the linear recurrence in Eq. (86) in parallel b; using RDA.

2. Compute ~oN+l from Eq. (33) by processor PR2 ~.

3. Wait.

Step III. Compute FN+l by Processor PR2 ~
,

1, Receive A-l from PRI N.
,

2. Solve Eq. (29) for Kc and compute FN,l from Eq, (24).

36

a.

1.

2.

b.

1.

2.

E.

Step IV. Compute ~. by Processor Array PR2 i

Compute 7’

Solve the linear recurrence in Eq. (S7) in parallel by using RDA,

Compute T; from Eq. (88) in parallel for i = N to 1.

Compute 6C

Set ?~ = !7’, repeat Step 11. C.2-8, and set dc = ~c.

Compute Q, = Qoi - QC~ in parallel for i = N to 1.

Performance of Multilevel Parallel Algorithm

In order to appreciate the simple communication and synchronization

requirements of the multilevel parallel algorithm, a brief discussion of its

behavior is in order.

The processors PRI ,’ s are activated by receiving the data input 0 and Q.

The processors PR2 ,’ s are in turn activated by receiving the data input from

processors PRI ,’s, The activities of processor array PRI ~ in computing Step
,

I and those of processor array PR2 ~ in computing Step 11 are then performed

in parallel and for the most part asynchronously. The cost of computing the

matrices (iIi)-l is much less than that of computing the vector 3’. Therefore,
T

the matrices (’1~)-1 are computed well before they are needed and hence their

communication by processors PR2 ~’s to processors PR
1,1 ‘s can be performed

asynchronously,

Both the computation and communication cost of diagonalization of matrix d,

as shown by theoretical analysis in [141 and practical itiplementation in [40],

are greater than those of the evaluation of vector F’~, Therefore, upon

computation of ~2 (which requires a small amount of additional operations) the

processors PR2 , enter the wait state and become active by receiving the
,

submatrices A~, Note that, the communication of submatrices C~-l and F~-l can

be performed asynchronously, i.e., they can be sent to processors PR2 , as

37

soon as they are computed.

The computation of A-l by processors PR1 ~ and do and ~oN+l by processors

PR2 ~ can be performed in parallel. It can be easily shown that both the
,

computation and communication costs of the evaluation of A
-1

are much greater

than those of the evaluation of 60 and hoN+l since the former requires the

computation Eq. (92) for six right-hand side vectors while the latter requires

the same computation for only one right-hand side vector. Therefore, upon

computation of V~N+l the processors PR2 i enter the wait state and become

active by receiving A ‘1 to perform the computation of Steps III and IV. Based

on our discussion, it can be concluded that the computation of Step II can be

totally overlapped with that Step I. As a result, the computation and

communication costs of Step II do not contribute to the overall computation

and communication cost of the algorithm.

The efficiency of our strategy for implementation of the OEE algorithm, in

terms of communication overhead minimization, can be assessed by analyzing the

diagonalization of matrix .4 in Step I.b and the computation of 4“ in Steps I.c

In fact, as can be seen, any communication activity can be overlapped with its

immediate computation activity. In most of emerging parallel architectures

(both SIMD and MIMD) each node has one processor dedicated to computation and

a second processor (e.g. , a DMA) dedicated to communication. “On these

architectures, this overlapping of the communication with the computation can

be exploited to significantly reduce the communication overhead.

It should be emphasized that the choice of the SIMD m;de for parallel

implementation of the algorithm is mainly motivated by the regularity in its

computation. However, the algorithm has a rather large grain size since,

particularly in Step I, each processor performs a matrix-vector operation or a

series of such operations before communicating with other processors. This

large grain size coupled with the possibility of overlapping the communication

3 s

with the computation and the low level of communication activities, make the

multilevel parallel algorithm highly suitable for implementation on MIMD

architectures such as Hypercube.

In fact, our practical implementation of a parallel algorithm based on the

Schur Complement factorization of J1-l for forward dynamics solution of open-

chain arm on a MIMD Hypercube architecture [40] supports the efficiency of the

proposed strategies for both implementation of the OEE algorithm and,

particularly, coarse grain multilevel parallel computation. In particular,

note that, the parallel algorithm in [37] for computation of b’(9,Q) in Step

11.b has a fine grain and its implementation on MIMD architectures leads to a

very limited speedup which can degrade the overall performance of parallel

computation. However, as was shown, with a multilevel parallel computation

approach the computation of b’ (o,Q) can be fully overlapped with the rest of

the computations. This eliminates the possibility of performance degradation

due to the fine grain parallel computation of b’(9,Q).

VII. Discussion and Conclusion

In this paper, we presented a new

M -1
‘1 and A , This technique results

and A‘1 and subsequently a new O(N)

factorization technique for computation of

in Schur Complement factorization of Al-l

algorithm for forward dynamics solution of

single close-chain arms. This O(N) algorithm is strictly efficient for

parallel computation. That is, it is less efficient than previously proposed

O(N) algorithms for serial solution of the problem. But, to our knowledge, it
. .

represents the first algorithm that can be fully parallelized, resulting in a

both time- and processor-optimal parallel algorithm for the problem.

In addition to theoretical significance, the resulting parallel O(Log N)

algorithm is also of practical importance. In fact, the algorithm achieves the

time lower-bound in the computation while also providing a high degree of

coarse grain parallelism which can be exploited with a rather simple

39

communication and synchronization requirements

We did not evaluate the computational cost of either serial or parallel

algorithms in terms of number of operations. As stated before, it is unlikely

that our serial algorithm can become competitive with the previously proposed

O(N) algorithms for the problem. The difficulty in assessing the relative

efficiency of serial algorithm of this paper arise from the fact that the

analysis of the O(N) algorithms in the literature is, for most part, limited

to the asymptotic complexity. This makes the determination of the best serial

algorithm, in terms of number of operations, highly difficult. Further

analyses and comparative studies are needed to establish a better

‘ understanding of the relative efficiency of various algorithms.

The lack of such a knowledge on the most efficient serial algorithm also

renders the analysis of the speedup of the parallel O(Log N) algorithms of

this paper impossible. However, it is clear that the multilevel parallel

computation of these algorithms can lead to a significant speedup in the

computation, particularly, for highly redundant arms. In this sense, these

multilevel parallel algorithms have immediate application for simulation of

redundant arms such as those proposed for Space Station. In fact, the Space

Station Remote Manipulator System (SSRMS) and the Special Purpose Dexterous

Manipulator (SPDM) may have as many as 25 DOFS in total,

The analysis of this paper clearly indicates that the main application of

these new factorization will most likely be limited to parallel computation

of the problem. This suggests that further research work; should be focused on

devising more efficient strategies for their parallel implementation. In this

sense, much can be learned from the results of the practical implementation of

a multilevel parallel algorithm based on the Schur Complement factorization of

M ‘1 for open-chain system on Hypercube [401.

40

Acknowledgments

T h e r e s e a r c h d e s c r i b e d i n t h i s p a p e r Gas perfor[l]ed a t t h e J e t P r o p u l s i o n

L a b o r a t o r y , C a l i f o r n i a I n s t i t u t e o f T e c h n o l o g y , u n d e r c o n t r a c t w i t h t h e

N a t i o n a l A e r o n a u t i c s a n d S p a c e A d m i n i s t r a t i o n (NASA).

Appendix: Positive Definiteness of Matrix d

Following theorem (see [361, pp. 140 for proof) is used in the analysis of

positive definiteness of various matrices.

Theorem. If A&Rnxn is positive definite and XcRnxk has rank k, then B = XTAX

is also positive definite.

The matrix M-lcIRNXN is the inverse of the mass matrix and is positive

definite. Therefore, from the above theorem, the positive definiteness of

-1matrix A , given in Eq. (21), depends on the rank of Jacobian matrix $cR6XN,

If, due to the kinematic singularity, the rank of # becomes less than six then

the matrix A-l becomes singular. If A -1
is positive definite then it follows

that the matrix W~+lA-lWN+l, in Eq. (29), is also positive, definite since W
N+l

is an orthogonal and hence a full rank matrix.

The matrix d is given as d = WTPT9-’

6NX6N
of matrix 9-lclR follows from posit

be easily seen that the matrix PcR6NX6N

PT3-13’0R6NX6N is also positive definite.

Pw &R5Nx5N. The positive definiteness

ve definiteness of Ii and 1~1. It can

has rank 6N. Hence, the matrix

For a joint i with ni<6 DOF, the

6x6-ni
columns of the matrix Wi CR are orthogonal and hence it has rank 6 - ni.

Therefore, the matrix W CIR6NX6N-” has rank 6n-m where m denotes the total

DOFS ,
.

that is, m = Z~=l ni. Again, from the above theorem, it follows that the

matrix d is also positive definite. The positive definiteness of matrix G’

follows by a similar reasoning and using the orthogonality of matrices Hi.

41

REFERENCES

1]

21

[31

[41

{51

[61

[7]

[81

[91

[10]

[11]

[12]

[13]

0, Khatib, ”A Unified Approach

Manipulators: The Operational

Automation, vol. RA-3(1), pp.

D.E. Orin and McGhee,’’Dynamic

for Motion and Force Control of Robot

Space Formulation, ” IEEE J. Robotics and

43-53, 19s7.

Computer Simulation of Robotic Mechanisms, ”

in Theory and Practice of Robot and Manipulators, pp. 286-296, 1981.

R. Featherstone, Robot Dynamics Algorithms, Ph.D. Dissertation, Univ. of

Edinburgh, 1984,

R. Featherstone, “The Dynamics of Rigid Body Systems with Multiple

Concurrent Contacts, ” Proc. 3rd Int, Symp, Robotics Research,

pp. 189-196, 1986.

R.H. Lathrop, ’’Constraint (Closed-Loop) Robot Simulation by Local

Constraint Propagation, ” Proc. IEEE Int. Conf, Robotics and Automation,

pp. 689-694, 1986.

K.W. Lilly, Ef f i c i en t Dynamic S imula t i on o f Mul t ip l e Cha in Robo t i c

Mechanism, PhD Diss. The Ohio State Univ. , 1989.

K.W. Lilly and D.E. Orin,” Efficient Dynamic Simulation of a Single

Closed-Chain Manipulator, ” Proc. IEEE Int, Conf. Robotics & Automation,

pp, 210-215, Sacramento, CA, April 1991.

K.W. Lilly and D.E. Orin,’’Efficient O(N) Computation of the Operational

Space Inertia Matrix, ” Proc. IEEE Int. Conf. Robotics & Automation, pp.

1014-1019, Cincinnati, OH, May 1990.

H. Brandle, R. Johanni, and M, Otter, “A Very Efficient Algorithm for the

Simulation of Robots and Similar Multibody Systems Without Inversion fo

the Mass Matrix, ” Proc. IFAC Int, Symp. on the Theory of Robots, 1986.

G. Rodriguez, A. Jain, and K. Kreutz-Delgado, “A Spatial Operator Algebra

for Manipulator Modeling and Control, ” Int. J. Robotics Research,

Vol. 10(4), pp. 371-381, Aug. 1991.

S. McMillan, D.E. Orin, and P. Sadayappan, t’Toward Super-Real-Time

Simulation of Robotic Mechanism Using a Parallel Integration Method, ”

IEEE Trans. Systems, Man, and Cybernetics, Vol. (XX) Jan,/Feb. 1992.

A. Fijany and A,K, Bejczy, “Techniques for Parallel Computation of

Mechanical Manipulator Dynamics. Part II: Forward Dynamics, ” in Advances

i n C o n t r o l a n d Dynami<

Dynamics and Cont ro l ,

March 1991.

A, Fijany, “Parallel O

S y s t e m s , V o l . 4 0 : A d v a n c e s i n R o b o t i c S y s t e m s

C.T. Leondes (Ed.), pp. 357-410, Academic Press,

log N) Algorithms for Rigid Multibody Dynamics, ”

42

[141

[151

[16]

[17

[18

[191

[2 0

[211

JPL Engineering Memorandum, EM 343-92-125S, Aug. 1992.

A. Fijany, I. Sharf, and G,M.T. D’Eleuterio, “Parallel O(Log N) Algorithms

for Computation of Manipulator Forward Dynamics,” Submitted to IEEE

Trans. Robotics a Automation.

R. Featherstone, “The Calculation of Robot Dynamics Using Articulated-Body

Inertia, “ Int. J. Robotics Research, Vol. 2(l); pp. 13-30, 1983.

A. Jain, “Unified Formulation of Dynamics for Serial Rigid Multibody

Systems, ” J, Guidance, Control, and Dynamics, Vol. 14(3), pp. 531-542,

May/June 1991.

G. Rodriguez, ’’Kalman Filtering, Smoothing and Recursive Robot Arm Forward

and Inverse Dynamics, “ IEEE J. Robotics & Automation, Vol. RA-3(6),

pp. 624-639, Dec. 19S7.

G. Rodriguez and K. Kreutz-Delgado, “Spatial Operator Factorization and

Inversion of the Manipulator Mass Matrix, ” IEEE Trans. Robotics &

Automation, Vol. RA-8(1), pp. 65-76, Feb. 1992.

A. Fijany and A.K. Elejczy, “Parallel Algorithms and Architecture for

Computation of Robot Manipulator Forward Dynamics, ” Proc. IEEE Int. Conf.

Robotics & Automation, PP. 1156-1162, April 1991, Sacramento, CA.

A. Fijany and R.E. Scheid,’’Fast Parallel Preconditioned Conjugate

Gradient Algorithms for Robot Manipulator Dynamic Simulation, ” To appear

in J. Intelligent & Robotic Systems: Theory & Application, 1993. Also,

in JPL Eng. Memo, EM 343-1196, Aug. 1991,

H. Kasahara, H. Fujii, and M. Iwata, “Parallel Processing of Robot Motion

Simulation, ” Proc. 10th IFAC World Congress, July 1987.

[22] C.S.G. Lee and P.R. Chang, “Efficient Parallel Algorithms for Robot

Forward Dynamics Computation, ” IEEE Trans. Syst. , Man, and Cybern. , Vol.

18(2), pp. 238-251, March/April 1988.

[231 I. Sharf, Parallel Simulation Dynamics for Open Multibocfy Chains, Ph.D.

Diss. , Univ. of Toronto, Canada, Nov. 1990.

[241 1. Sharf and G.M.T. D’Eleuterio, “Parallel Simulation Dynamics for Rigid

Multibody Chains, ” proc. 12th Biennial ASME Conf. on Mechanical Vibration

and Noise, Montreal, Canada, Sept. 1989.

[251 A. Fijany,’’Parallel O(Log N) Algorithms for Open- and Closed-Chain Rigid

Multibody Systems based on a new Mass Matrix Factorization Technique, ”

Proc. 5th NASA Workshop on Aerospace Computational Control, pp. 243-266,

Santa Barbara, Aug. 1993.

[261 J.Y.S. Luh, M.W. Walker, and R.P.C. Paul, “On-Line Computational Scheme

for Mechanical Manipulator, ” ASME J. Dynamic Syst., Meas., Control,

43

4 4

vol. 102, pp. 69-76, June 19S0.

[27] J. Angeles, “On Numerical Solution of Inverse Kinematic Problem, ” Int. J

Robotic Res., Vol. 4(2), pp. 21-37, 1985.

[281 A. Fijany and A.K. Bejczy, “ASPARC: An Algorithmically Specialized

Parallel Architecture for Robotics Computations, ” in Parallel

[29]

[3 0]

[311

[32]

[331

[3 4]

[351

[3 6]

[371

[38]

[391

[4 0]

C o m p u t a t i o n S y s t e m s f o r R o b o t i c s : A l g o r i t h m s a n d A r c h i t e c t u r e s , A. Fijany

and A.K. Bejczy (Eds.), World Scientific Pub., 1992.

P.C. Hughes and G.B. Sincarsin, “Dynamics of an Elastic Multibody Chain.

Part B: Global Dynamics, ” Int. J. Dynamics and Stability of Systems,

Vol. 4(3&4), pp. 227-244, 1989.

C.J. Damaren and G.MT. D’Eleuterio, ”On the Relationship between

Discrete-Time Optimal Control and Recursive Dynamics for Elastic

Multibody Chains, ” Contemporary Mathematics, Vol. 97, pp. 61-77, 1989,

R.W. C’ottle, ’’Manifestation of Schur Complement, ” Linear Algebra and its

Application, Vol. S, pp. 189-211, 1974.

A. Fijany,’’New Mass Matrix Factorization Techniques and Parallel O(Log N)

Algorithms for Dynamic Simulation of Multiple Manipulator Systems, ” In

preparation.

R.W. Hockney and C.R, Jesshope, Parallel Computers, Adam Hilger Ltd, 1981

D. Heller,’’Some Aspects of the Cyclic Reduction Algorithm for Block

Tridiagonal Linear Systems, ” SIAM J. Numer. Anal., Vol. 13(4), 1976.

D,E. Heller, D i r e c t a n d I t e r a t i v e M e t h o d s f o r Block Tridiagonal L i n e a r

S y s t e m s . Ph.D. Diss., Carnegie-Mellon Univ., April 1977.

G.H. Golub and C.F. Van Loan, Natrix Computations, 2nd Edition, The John

Hopkins Univ. Press, 1989.

C.S.G. Lee and P.R. Chang, “Efficient Parallel Algorithms for Robot

Inverse Dynamics Computation, ” IEEE Trans. Syst., Man, and Cybern. ,

vol. 16(4), pp. 532-542, July/August 1986.

P.M. Kogge, “Parallel Solution of Recurrence Problems, ” IBM J. Res. Dev.,

Vol. 18, pp. 138-148, March 1974. -.
A. Fijany and N. Bagherzadeh, “Communication Efficient Cyclic Reduction

Algorithms for Parallel Solution of Block Tridiagonal Systems, ” Submitted

to Information Processing Letters.

A. Fijany, G. Kwan, and N. Bagherzadeh, “A Fast Algorithm for Parallel

Computation of Multibody Dynamics on MIMD Parallel Architecture, ” To be

presented at Computing in Aerospace 9 Conf. , San Diego, CA, Oct. 1993.

